	RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)	
	FIRST YEAR [2016-19] B.A./B.Sc. FIRST SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016	
Date Time	MATHEMATICS GENERAL FOR ECONOMICS e : 12 noon - 1 pm Paper : I Full Mathematics Full Mathematics	arks : 25
[Use a separate Answer Book for each group] <u>Group – A</u>		
	(Answer <u>any three</u> questions)	[3×5]
1.	Show that the product of all the values of $(\sqrt{3} + i)^{\frac{3}{5}}$ is 8i.	[5]
2.	a) If $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, show that $A^{50} = \begin{pmatrix} 1 & 0 \\ -50 & 1 \end{pmatrix}$.	[3]
	b) Show that $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix} = (a+b+c)(a-b)(b-c)(c-a).$	[2]
3.	Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{pmatrix}$ by reducing it to the normal form.	[5]
4.	Prove that the set $Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{R}\}$ forms a field with respect to usual addition and multiplication.	d [5]
5.	Prove that a monotone increasing and bounded above sequence is convergent and converges to it's suppremum.	s [5]
	<u>Group – B</u>	
	(Answer <u>any two</u> questions)	[2×5]
6.	Let $A = \{x \in \mathbb{Z} \mid 0 \le x \le 10\}, B = \{x \in \mathbb{Z} \mid 5 \le x \le 15\}$ Find—	
	a) $A \cup B$ b) $A \setminus B$.	

- Now let $C = \{x \in \mathbb{Z} \mid x \ge 5\}$ and verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. [(2×1·5)+2]
- 7. Define a bijective function with an example and verify why the function is bijective. [2+3]
- 8. a) If f:A→B & g:B→C be both injective mapping then prove that the composition of f and g i.e gof:A→C is injective. [3]
 - b) $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = e^x \forall x \in \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ defined as $g(x) = 2x \forall x \in \mathbb{R}$ check whether gof is injective or not. [2]

_____ × _____